Extracellular Surface Residues of the a1B-Adrenoceptor Critical for G Protein–Coupled Receptor Function

نویسندگان

  • Lotten Ragnarsson
  • Åsa Andersson
  • Walter G. Thomas
  • Richard J. Lewis
چکیده

Ligand binding and conformational changes that accompany signaling from G protein–coupled receptors (GPCRs) have mostly focused on the role of transmembrane helices and intracellular loop regions. However, recent studies, including several GPCRs cocrystallized with bound ligands, suggest that the extracellular surface (ECS) of GPCRs plays an important role in ligand recognition, selectivity, and binding, as well as potentially contributing to receptor activation and signaling. This study applied alanine-scanning mutagenesis to investigate the role of the complete ECS of the a1B-adrenoreceptor on norepinephrine (NE) potency, affinity, and efficacy. Half (24 of 48) of the ECS mutations significantly decreased NE potency in an inositol 1-phosphate assay. Most mutations reduced NE affinity (17) determined from [H]prazosin displacement studies, whereas four mutations at the entrance to the NE binding pocket enhanced NE affinity. Removing the influence of NE affinity and receptor expression levels on NE potency gave a measure of NE efficacy, which was significantly decreased for 11 of 48 ECSmutants. These different effects tended to cluster to different regions of the ECS, which is consistent with different regions of the ECS playing discrete functional roles. Exposed ECS residues at the entrance to the NE binding pocket mostly affected NE affinity, whereas buried or structurally significant residues mostly affected NE efficacy. The broad potential for ECS mutations to affect GPCR function has relevance for the increasing number of nonsynonymous single nucleotide polymorphisms now being identified in GPCRs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extracellular surface residues of the α1B-adrenoceptor critical for G protein-coupled receptor function.

Ligand binding and conformational changes that accompany signaling from G protein-coupled receptors (GPCRs) have mostly focused on the role of transmembrane helices and intracellular loop regions. However, recent studies, including several GPCRs cocrystallized with bound ligands, suggest that the extracellular surface (ECS) of GPCRs plays an important role in ligand recognition, selectivity, an...

متن کامل

G-protein Coupled Receptor Dimerization

A growing body of evidence suggests that GPCRs exist and function as dimers or higher oligomers. The evidence for GPCR dimerization comes from biochemical, biophysical and functional studies. In addition, researchers have shown the occurrence of heterodimerization between different members of the GPCR family. Two receptors can interact with each other to make a dimer through their extracellular...

متن کامل

Selective Inhibition of a1B-Adrenergic Receptor Expression and Function Using a Phosphorothioate Antisense Oligodeoxynucleotide

To investigate a1B-adrenoceptor function, we developed a phosphorothioate antisense oligodeoxynucleotide (AO) to inhibit the expression of the a1B-adrenoceptor subtype in DDT1 MF2 cells. We measured the cellular uptake of the AO and its effect on a1B-adrenoceptor mRNA expression, protein density, and coupling to phospholipase C. Cells treated with either a control oligodeoxynucleotide (CO) or m...

متن کامل

The Effect of Aspartate-Lysine-Isoleucine and Aspartate-Arginine-Tyrosine Mutations on the Expression and Activity of Vasopressin V2 Receptor Gene

Background: Vasopressin type 2 receptor (V2R) plays an important role in the water reabsorption in the kidney collecting ducts. V2R is a G protein coupled receptor (GPCR) and the triplet of amino acids aspartate-arginine-histidine (DRH) in this receptor might significantly influence its activity similar to other GPCR. However, the role of this motif has not been fully confirmed. Therefore, the ...

متن کامل

Cell surface delivery and structural re-organization by pharmacological chaperones of an oligomerization-defective α1b-adrenoceptor mutant demonstrates membrane targeting of GPCR oligomers

Many G-protein-coupled receptors, including the alpha(1b)-adrenoceptor, form homo-dimers or oligomers. Mutation of hydrophobic residues in transmembrane domains I and IV alters the organization of the alpha(1b)-adrenoceptor oligomer, with transmembrane domain IV playing a critical role. These mutations also result in endoplasmic reticulum trapping of the receptor. Following stable expression of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014